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Structure functions of turbulent temperature and velocity fluctuations are measured 
both for the atmosphere, in the surface layer over land, and for the laboratory, in the 
inner region of a thermal boundary layer and on the axis of a heated jet. Even-order 
temperature structure functions, up to order eight, generally compare favourably with 
the analysis of Antonia & Van Atta over the inertial subrange. The Reynolds number 
dependence of these structure functions, as predicted by the analysis, is in qualitative 
agreement with the measured data. Odd-order temperature structure functions depart 
significantly from the isotropic value of zero, particularly at  large time delays. This 
departure is reasonably well predicted, over the inertial subrange, by postulating 
a simple ramp model for the temperature Auctuations. Assumptions involved in this 
model are directly tested by measurements in the heated jet. The ramp structure does 
not seriously affect either the even-order temperature structure functions or the mixed 
velocity-temperature functions, which include even-order moments of the temperature 
difference . 

1. Introduction 
In a previous paper (Antonia & Van Atta 1975) an analysis based on dimensional 

arguments was developed to determine the behaviour of structure functions of velocity 
and temperature fluctuations in the inertial subrange. This analysis included the 
correlation between the dissipation fields of velocity and temperature fluctuations. 
Although this correlation was measured in a turbulent heated jet, no measurements of 
structure functions were made for direct comparison with the analytical expressions. 

In this paper, we present measurements of the nth-order (with n as large as eight) 
structure functions of velocity and temperature fluctuations in various heated turbu- 
lent flows over a relatively large range of Reynolds numbers. The measured tempera- 
ture structure functions are compared with measurements by Park (1976) in the 
&tmospheric boundary layer above the surface of the ocean and with some earlier 
results obtained by Yeh (1971) in very low Reynolds number grid turbulence. The 
dependence on r ,  the separation distance between the two longitudinally separated 
points, of the even-order temperature structure functions is found to be reasonably 
well represented by the results of the analysis. The odd-order temperature structure 
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functions are found to deviate appreciably from their expected isotropic value. This 
deviation is reasonably well accounted for, at least for values of r in the inertial sub- 
range, by a simple ramp model (Van Atta 1977) of the temperature fluctuations. The 
characteristic ramp appearance of the temperature signal appears to be a feature 
common to the temperature signal in all turbulent flows, the ramp being effectively 
the signature of the large-scale structure of the flow. In  a boundary layer over a heated 
sudace, the ramp structure has the form of a relatively slow increase in temperature 
followed by an abrupt decrease back to the level of the external stream. Temperature 
signals with such a ramp signature were first reported for the atmospheric boundary 
layer by Taylor (1  958), who also observed that the arrival time of the coherent tempera- 
ture structure at a fixed longitudinal position was an increasing function of height, 
implying a coherent structure which was tilted in the downstream direction. Kaimal & 
Businger (1970) identified the ramp structure in the atmospheric boundary layer with 
individual convecting thermal plumes being sheared by the mean velocity gradient, 
and Frisch & Businger (1973) inferred the statistical distribution of the plume geometry 
from atmospheric temperature signals. Monji (1973) found that in the atmospheric 
boundary layer over a salt flat the ramps could be identified at a height of only 1 cm 
above the ground. According to Bean et al. (1972) the ramp structure in some measure- 
ments over the ocean could be due to either buoyant plumes under shear or two- 
dimensional roll vortices. On the basis of their laboratory observations Mestayer et al. 
(1976) suggested the latter model as being generally valid for shear flows. The present 
ramp model assumes that the small-scale fluctuations, which are superimposed on the 
ramp, are isotropic and uncorrelated with the-ramp statistics. 

2. Experimental conditions 
The temperature and velocity data were obtained on the axis of a heated round jet, 

with a co-flowing ambient-temperature external stream, in a laboratory thermal 
boundary layer and in the atmospheric surface layer over land. Measurements in the 
jet were made at a distance of 59 diameters downstream of the nozzle. The jet velocity 
was 32 ms-1 while the velocity of the zero-pressure-gradient external stream was 
4-85 ms-1. 

Experimental conditions and a detailed description of the experimental technique 
used in the jet investigation are given in Antonia, Prabhu & Stephenson (1975). The 
axial (u) and radial (v) velocity fluctuations were obtained with a miniature DISA 
X-wire (5,um diameter platinum-tungsten wires) operated by two channels of DISA 
55M 10 constant-temperature anemometers. The temperature fluctuation was 
measured with a 1 pm diameter platinum ‘ cold ’ wire operated by a constant-current 
anemometer (the value of the current was set at  200,uA). 

Measurements in the laboratory boundary layer were made well downstream of 
a step change in surface heat flux, with a zero external pressure gradient. The free- 
stream velocity was 9-45 ms-1 and the boundary-layer thickness ah the measurement 
station was 8.64 cm (the thermal-layer thickness was 6.0 cm). Descriptions of experi- 
mental techniques and conditions used are available in Antonia, Danh & Prabhu 
(1977). Velocity (streamwise u and normal v) and temperature (0)  fluctuations were 
obtained with an X-wire plus ‘cold’ wire arrangement, similar to that used for the 
jet. 
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For the atmospheric measurements, a two-wire probe was used to measure u and 6 
at  a height of 1.4m above the top of a wheat crop canopy at the Bungendore (New 
South Wales) field site of the C.S.I.R.O. Division of Environmental Mechanics. The 
wires were parallel and mounted in a vertical direction normal to the mean wind. The 
‘hot’ wire (5pm diameter platinum-coated tungsten, 1 mm long) was operated with 
a DISA 55M10 anemometer via a cable of length 1OOm. The 1 pm diameter platinum 
‘cold’ wire (of length 0.8 mm) was operated with a current of 20OpA and was sensitive 
to only temperature fluctuations. The constant-current anemometer used with this 
wire had a high-pass cut-off frequency at  0.02Hz. A description of this anemometer 
may be found in Stellema, Antonia & Prabhu (1975). 

The u and 6 signals for the above three experiments were recorded on a Philips 
Analog 7 FM tape recorder at a speed of 38.1 cms-l (jet and boundary layer) or 
9.53 cm s-1 (atmospheric layer). The recorded signals were later played back at  a 
reduced speed into a sharp cut-off low-pass filter prior to digitization. The digital data 
were transferred to the RK 11 disc drive of the PDP 1 1-45 computer of the Faculty of 
Engineering, University of Sydney. It should be noted that the cut-off frequency f, of 
the filter was set as close to the Kolmogorov frequency fK as was conveniently possible 
(see table 1) while the sampling frequency was set equal to 2fc( f K  = U/2rrLK), where 
U is the local velocity and LK is the Kolmogorov length scale vs/(e)*, ( e )  being the 
mean turbulent energy dissipation determined experimentally from the mean square 
((au/ax)2) of the velocity derivative via the isotropic relation ( e )  = 15~((8u/ax)~). 

Using the PDP 11-45 computer, structure functions of the temperature (or velocity) 
were computed directly from time series of the digitized signals. The nth-order 
structure function of the temperature is defined as 

((As)”) = ([W + 7 )  - O(t)l”), 
where T is the time delay, which, for computational convenience, is equal to i(2fc)-l, 
where i is an integer ranging from 1 to 1000. The time structure function can be 
interpreted as a space structure function by using Taylor’s hypothesis r = - UT, where 
r is now the spatial separation between the two points. As the most comprehensive sets 
of measurements of high-order moments of temperature structure functions have 
been obtained by Yeh (1 971) in heated grid turbulence and Park (1 976) in the boundary 
layer above the heated ocean, some of their measurements are compared with the 
present results in the following sections. Experimental conditions, including values 
of the local turbulence levels, are summarized in table 1. 

Running moments of ((AO)n) and ((An)“) for the jet flow have been calculated at  
intervals approximately 1 s apart. All moments, for n = 2-8 and for both small and 
large values of T ,  converge to within & 5 % of their final values after a duration of 
about 13 s (less than half the total record duration). A study of the convergence of the 
normalized structure functions ((AB)*)/((A0)2)f~ of the temperature for Park’s (1 976) 
data showed that even-order moments converge to within 5 %  of their final values 
faster than odd-order moments (this result was also noticeable in the jet data). The 
total times required to assure convergence to within 5 yo for the entire inertial sub- 
range are about 10 min for second- and fourth-order moments, 13 min for sixth-order 
moments and 16min for eighth-order moments. The corresponding times for third-, 
fifth- and seventh-order moments are 13 min, 20 min and 30 min, respectively. For the 
atmospheric data collected at Bungendore, the record length was limited to only 1928, 
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FIGURE 1 (a). For legend see following page. 

mainly because of the relatively small available disc space on the PDP 11 computer 
and the relatively high frequency of 2 kHz used for sampling. From the convergence 
tests done on Park’s data, we estimate that the accuracy for the Bungendore data is 
better than 20 yo for both even- and odd-order moments. 

3. Temperature structure functions 
Normalized temperature structure functions ( (A6)n)/(Oz)!@ for values of n ranging 

from two to eight are shown as a function of r/LK in figures 1-3, which correspond to 
data for the atmospheric surface layer, jet and laboratory boundary layer respectively. 

The second-order structure function in the atmosphere exhibits a relatively exten- 
sive (40 c r/LK < 1000) ‘two-thirds’ power-law dependence, which corresponds to 
the well-known inertial-subrange behaviour. The rg variation remains significant in 
the jet but is considerably reduced for the boundary layer, even though Rh is approxi- 
mately the same for the jet and boundary layer. The rate of increase of the higher 
even-order structure functions in the inertial subrange (as defined by the - rf 
dependence) becomes larger as the order increases. However, the power-law depen- 
dence seems to be retained and when n is equal to eight, the dependence is like approxi- 
mately rQ for both atmospheric and jet data. Note that the scatter exhibited by the 
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FIGURE 1. (a) Even-order temperature structure functions in atmospheric boundary layer. 
0, ((A@2)/(@); A, ((A@4)/(@)2; +, (((AW)/(82)8) x 10-l; V ,  (((A@8)/(82)4) x lo-*; 0 ,  
((AOT)2)/(82); A, ((A0T)4)/(02)2. (Filled symbols denote only turbulent contributions to structure 
functions; cf. 3 4.) (a) Odd-order temperature structure functions in atmospheric boundary layer. 
0, - ( (AO)s) / (82)~;  A,  -(((A@16)/(@9*) x 1O-I; 0, - (((A8)')/(82)6 x lo-'. 

sixth-order and, in particular, the eighth-order structure functions in the atmosphere 
is probably due to the relatively short duration of the record used. 

The main feature of the odd-order structure functions in figures 1-3 is that their 
magnitude departs significantly from zero, the value expected from local isotropy. 
This departure is also noticeable in Yeh's (1  97 1 )t measurements of ((A0)3) downstream 
of a heated grid and the published measurements of the skewness of the temperature 
derivative in a wide selection of turbulent shear flows. 

It should be noted that the odd-order time structure functions of temperature are 
positive for the jet and negative in the boundary layer (both laboratory and atmo- 
spheric). This change of sign is in agreement with the reported negative and positive 
values for the skewness of the streamwise temperature derivative in the jet and 
boundaxy layer respectively. In  the inertial subrange, the odd-order structure functions 
appear to exhibit a power-law dependence on 7 (or r) ,  with increasing approxi- 

t Yeh shows that a considerable part of the magnitude of the third-order structure function 
is due to the neglected velocity sensitivity of the cold wire. For the present measurements, the 
influence of the neglected velocity sensitivity on (n odd) was found to be negligible. 
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FI~URE 2 (a). For legend see following page. 

mately linearly with increasing 7 in all three flows and ((AO)5) and ((A@') increasing 
at slightly faster rates. The magnitude of the odd-order functions has a maximum at 
relatively large values of 7 in all three flows. 

The time-skewness factors 

P ( 7 )  = ((AO)n)/((AO)2)*n (nodd) 

and the time-flatness factors 

P ( 7 )  = ((A8)n)/((AO)2)4m (n even) 

are shown in figures 4 (a)  and (b), respectively, for the case of the laboratory boundary 
layer. The skewness factors decrease significantly with increasing 7,  and while they 
exhibit considerable scatter at large 7 ,  they do not attain the isotropic value of zero. 
The magnitude of Fn (figure 4b) is slightly smaller than the appropriate Gaussian 
value a t  large 7 .  

Also shown in figure 4 are curves corresponding to various expressions derived by 
Prenkiel & Klebanoff (1967) which relate high-order skewness or flatness factors to 
lower-order ones. Frenkiel & Klebanoff assumed a Gram-Charlier probability density 
function to predict the departures from Gaussianity of the skewness and flatness factors 
of velocity structure functions in grid turbulence. It is clear from figure 4 ( b )  that the 
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FIQURE 2. Even- and odd-order temperature structure functions in jet. (a) 0, ((AfqZ)/(@); 0 ,  
((AOT)*)/(O'); 0, ((A@')/(O')); A,  ((A@')/(e*)'; A, ((Ae~)')/(e'>'; +, ((Ae)')/(e')t. (a) + 9 

((A@)6)/(Oa)s; 0, V, ((A8)8)/(094. (Filled symbols denote only turbulent con- 
tributions to structure functions; cf. $4.) 

sixth-order Gram-Charlier probability density is a significantly better representation 
of the measured hyperflatness factor Fa than the fourth-order density. Similarly, the 
hyperskewness S7 is better represented by the sixth-order (5' = 21Ss- 105S3) than 
by the fourth-order ,(57 = 105S5) Gram-Charlier probability density function. 

Dimensional arguments presented in Antonia & Van Atta (1975) led to an inertial- 
subrange behaviour of the mixed velocity-temperature structure functions given by 

((Au)" (At)),) = C,, d(m+n)(~$m-*nxb), (1) 

where the C,, are universal constants which depend on the particular values ofrn and n, 
and where it has been assumed that the Prandtl number of the fluid is near unity. E+ and 
xr represent the dissipations, averaged over a linear dimension r ,  ,of velocity and 
temperature fluctuations respectively. When m = 0, 

((A8)n) = C,,,r*n(g*n xb). 
The correlation between the two dissipation fields may be written as 
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FIGURE 4(a). For legend me facing page. 

where i2 = &n($n - np - 2) ,  p ( r )  is the correlation coefficient between In xr and lng,  
and the following assumptions have been made: 

(i) that 6, and xr are lognormally distributed and their joint probability density is 
bivariate lognormal; 

(ii) that the variances of l n g  and lnXr are both given by (Kolmogorov 1962; 
Oboukhov 1962; see also Antonia & Van Atta 1975) 

v2 = A +pln (L/r ) ,  (4) 

where A is a universal constant and L is the turbulence length scale. 
Expression (2) can now be written as 

((AO)") = C,,nr*n(x)*n (e)-in exp (AR) ( . L / r ) p * .  ( 5 )  

With p = 4 and p = 8, the values used by Antonia & Van Atta (1975), the inertial- 
subrange variations of ((A8)2), ((At9)4), ((A13)e) and ((A@&) are given by rj, r, r and r3 
respectively. The original two-thirds variation for the second-order structure function 
is unchanged but the modified analysis predicts variations of higher even-order 
moments which are in closer agreement with the data than the predictions of the 
original theory. When n = 8, the previously mentioned experimental variation is like 
& while the modified and original analyses yield & and rt Variations respectively. AS 
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I oo ." 
10' I 0 2  I 03 

FIGURE 4. (a) Skewness factors of structure functions in laboratory boundary layer. 0. -S8 x loa; 
0, - S 6 x  10; A, -S7; -0-, S7 = 105Ss; -V--.-, S7= 21S6-105S3. (b)  Flatness factors 

---, Fa = 2lOF4-525; ----, F'J=  28F0-210F4+315. Horizontal lines refer to Gaussian 
values (F4 = 3, Po = 15, F'J = 105). 

of structure functions in laboratory boundary layer. 0, F4; 0, F"; A, Fa; - , Fo = 15P-30; 

found by Van Atta & Park (1972), the modified Kolmogorov analysis consistently 
underestimated the observed power of r,  while the original (1941) theory over- 
estimated it.t  

The flatness factors of A 0  for the jet and the high RA data, plotted in figure 5 as 
a function of r/Lg, show a - 6 dependence in the inertial subrange, in agreement with 
the prediction of the modified theory. The slope of the superflatness factors in the 
inertial subrange, shown in figure 6, is not quite as steep as r-l, but it is closer to the 
prediction of the modified theory than to that of Kolmogorov's 1941 theory. At small 
values of r, 

so that the flatness factor of he should approach the value of the flatness factor of the 
temperature derivative. The measured flatness factor of the derivative is indicated in 
figure 5. Figures 5 and 6 show that the present atmospheric data are in close agreement 
with Park's (1976) data and reveal that Mestayer's (1975) data obtained in the 
Marseille wind-water tunnel a t  a relatively large laboratory RA lie between the present 

t Note, however, that the exponent of r in the modified rtnalysis is zero for n = 10 and negative 
at larger n, whereas the experimental values continue to increase positively. 

( ( w n ) i ( ( w v  -+ ((aeiaz).)i((aeiaz)2>~n, 
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FIQURE 5. Reynolds number dependence of flatness factor of temperature structure function. 
v, grid turbulence (Yeh 1971), RA = 35.2; A, laboratory boundary layer, R, = 160; D, jet, 
R, = 188.2; 0, atmospheric boundary layer over land, RA = 1132; 0 ,  atmospheric boundary 
layer over water (Park 1976), RA = 3200; ---, laboratory boundary layer (Mestayer 1975), 
RA = 1050. Horizontal line refers to Gaussian value (P4 = 3). Arrows indicate values of flatness 
factors of the temperature derivative. 
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FIQERE 6. Reynolds number dependence of superflatness factor of temperature structure function. 
Symbols are as in figure 5. Horizontal line refers to Gaussian value (Pa = 15). 

laboratory data and the atmospheric data. The significant dependence on R, of the 
flatness and superflatness factors of A&' is clearly demonatrated in figures 5 and 6. The 
predicted Reynolds number dependence of the modified analysis can be inferred from 
( 5 ) ,  since 

( (A&')lz)/((Ad)2)hn N ( L / ~ ) p ( ' - i ~ ~ ) ,  (6) 
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FIGURE 7. Reynolds number dependence of P4 for fixed values of rlLK. 

0, r/LK = 30; 0, rILK = 40; 0, r = A. 

where R'=&(Q-p). 
For a given value of r/LE, (6) can be written as 

((A@')/( (AO)2)*n N (7) 

F4 - Rf. (8) 

since L/LE N RA# for isotropic turbulence. When p = 3, R' = 0 and i2 = 8, so that 

With p = 4, F4 varies as Rf, as indicated in figure 7 together with the present experi- 
mental values of F4 and those of Yeh (1971) and Park (1976) for values of r of 30LE 
and 40LE respectively. The increase in F4 with RA is supported qualitatively by the 
data, but in view of the large scatter in the data and the relatively small RA range for 
which atmospheric data are available, it is difficult to make a meaningful comparison 
with (ti).? 

The third-order correla,tion ((Au)(A8)2) and the fourth-order correlation 
( ( A u ) ~  (A6)Z)are shown in figures 8 and 9 for the atmospheric and jet datarespectively. 
The variation with r of ((Au) is approximately linear over the inertial subrange, 
in agreement with Yaglom's (1949) result 

((Au) = -+(x)r,  (9) 

derived from consideration of the scalar conservation equation for a homogeneous and 
isotropic field of turbulence. Figure 10, which uses co-ordinates normalized by Kolmo- 
gorov velocity (uK), time ( T ~ )  and length (LK) scales, shows that (9) is in close agree- 

? Also shown in figure 7 are the experimental values of P4 obtained by setting r equal to A, the 
easily measured Taylor microscale. When r = A,  (6) yields F" N Ria as L/A - RA in isotropic 
turbulence. For p = +, P4 N Rf. This reduced rate of increase of F4 seems to be qualitatively 
supported by the data in figure 7. 
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FIGURE 8. Mixed velocity-temperature structure functions in atmospheric boundary layer. 0, + , 
- ( (Au)  (AW)/(u2)*  ( 0 9 ;  0, 0 ,  ( (Au)* (AW>/(u')  (6% A, - ( ( W (  AW)/((Au)*)l  ((A@'); 

ment with both jet and atmospheric data.? While the mixed velocity-temperature 
skewness ((Au) (AO)2)/((Au)2)4 ((AO)2) is nearly constant over the inertial subrange, 
the ratio ( ( A u ) ~  (AO)2)/((Au)2) ((A@%) is remarkably constant over almost the com- 
plete range of r under investigation. The values of these two constants are only slightly 

t For the experiment81 data, the isotropic value of ( x )  = 3a((lk9/az)*) has been used. 

0, ((Au)' (AB)2)/((Au)e) ((A@*); U, ((Au)' (A@a)/((Au)8) ((A@*), Park (1976). 
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larger for the atmospheric than for the jet data. In the analysis of Antonia & Van Atta 
(1975), it was shown that for the lognormal model 

and 

From the atmospheric data of Paquin & Pond (1971), appropriate values for C,, 
and C,, are 2 and 1.6 respectively. With the assumption that C1, is equal to - 8  
[equation (9)], the coefficient Clz/(C~Coz) in (10) is - 0.29. This number is in excellent 
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FIUURE 10. Mixed velocity-temperature structure functions normalized by Kolmogorov scales. 
A, jet; 0, atmospheric boundary layer over land; 0, atmospheric boundary layer over ocean 
(Park 1976). 

agreement with that obtained from atmospheric data in the inertial subrange by 
Paquin & Pond (1971) and Gurvich t Zubkovskii (1966). The present atmospheric data 
(figure 8) indicate a value of - 0.28 while the jet data (figure 9) yield a slightly larger 
value of - 0.24. For the low RA data of Yeh, ((Au) (AO)2)/((Au)2)4((AO)2) was found 
to be in the range - 0.30 to 0.22t when r/L,  is in the range 15LK to 30LK. The results 
of figure 8 suggest that C2,/C2,CO2 is approximately equal to 1.4, so that C,, N 4-5.t  

As 7 (or r )  approaches zero, the ratios on the left-hand sides of (10) and (1 1) should 
tend to 8, (= ((&/ax) (ae/ax)z)/((au/ax)2)~ ((aO/ax)2)) and 

( ( a + 9 2  fa@/a~)2>/<(au/wz) ((a@lW2> 
respectively. This is indeed found to be the case in figures 8 and 9. The slight increase 
in 8, from the jet (figure 8) to the atmospheric data (figure 9) is in qualitative agree- 
ment with the R, trend of 8, predicted by Van Atta (1974). 

coefficients since 
t These values were obtained from the measured second- and third-order time correlation 

((4 (Ws) / (ua) i  (ea> = Rp,,, - 2R,,6 -k 2R,e.e -R,,.p and ( ( W a ) / ( u a )  = 2 ( 1 -  RuJ9 

where the R's are correlation coefficients normalized by appropriate powers of (ua) and (ea).  

that p = Q was obtained from low RA jet data. 
$ The values of C,, and C,, are not likely to be seriously affected by the actual value of p. Note 
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FIGURE 11. Ramp model of temperature. 

4. Effect of temperature ramps on structure functions 
The behaviour of odd-order structure functions of 8 presented in the previous section 

is in obvious disagreement with predictions of high Reynolds number local similarity 
theory. Van Atta (1977) has already noted that this behaviour appears to be a conse- 
quence of the presence of a large-scale coherent temperature structure in the atmo- 
spheric temperature signal. The signature of this large-scale structure in the tempera- 
ture is not confined to the atmospheric situation as it has also been observed in various 
turbulent flows in the laboratory. The simplest model that has been used to represent 
the effect of this large-scale structure is sketched in figure 11. In  this sketch, 8 is simply 
assumed to be made up of the linear superposition of OR, a linear ramp, and S,, which 
represents 'turbulent ' fluctuations whose characteristic time (or length) scale is 
significantly smaller than that of OR. The ramp is characterized by a slow linear increase 
with time followed by an abrupt sharp decrea8e.T With the assumption that (AS),  
and (AS), are statistically independent, Van Atta (1977) obtains 

((Ae)3) = ((AeT)3) + (IAeR)? (12) 

(13) 

and shows that a good approximation to ((AS,)") in the inertial-convective subrange 
is given by 

(plus sign for jet, minus sign for boundary layer) to first order in r (it is assumed that 
our interest lies mainly in inertial-range values of r which are small compared with 
Z+s). In  this expression, a is the amplitude of the ramp (figure l l ) ,  1 is the length of 
the ramp and s is the length of the quiescent period between consecutive ramps. With 
the further assumption that the small-scale properties of ST are locally isotropic, so 
that ((A6T)n) = 0, when n is odd, an equation for the ramp amplitude can be found: 

((be,)") = ( &  1)nU.nr/(l+8) 

a3+ [10((AS)2)-((AS)5)/((A8)3)]a+ 10((AS)3) = 0 (14) 

(plus sign for boundary layer, minus sign for jet), so that a can be estimated from the 
measured values of second-, third- and fifth-order structure functions of AS. Values of 
a/(S2)t are shown in figure 12 and are approximately constant over a significant range 
of r/LK.  Values of 1 +s, the distance between consecutive ramps, obtained using (12) 
and (1 3), are given by 

(15) I + 8 = 5 ~ 3 r / ( ( ~ e ) 3 )  

Note that the direction of this ramp is the same in the laboratory boundary layer. In the 
jet, the ramp is reversed in time. 
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(minus sign for boundary layer, plus sign for jet). As shown in figure 12, the values of 
t + s are remarkably constant in the case of the jet, being equal to approximately 1 lL,, 
where L, is an integral length scalet of the turbulence. The ratio ( 1  + S)/L, is not nearly 
as constant for the atmospheric data, but its magnitude emphasizes the relatively 
large scale of the atmospheric ramps in comparison with the turbulence length scale 
and the inertial-range scales of r .  The frequency of occurrence of the atmospheric 
ramps is U/(1+  s) 2: 8 min-1, which is in reasonable agreement with the frequency of 
5-7 min-1 obtained by Van Atta from Park's atmospheric data and significantly 
smaller than the repetition rate of 30 s-l for the jet ramps. It should be noted that 
the values of a/(02)4 and ( t  + s) /L,  for the jet ramps are in good agreement with mean 
values for these two quantities inferred from temperature traces displayed on an 
ultra-violet strip-chart recorder. A linear ramp model similar to that shown in figure 11 
was used by Antonia & Atkinson (1976) to explain some of the measured high-order 
moments of temperature in the jet. A more elaborate model was also developed for 
the ramp structure with an exponential, instead of linear, mean ramp distribution and 
with allowance for the random length of the ramp. It is possible that this more realistic 
model of the ramp may be used to explain the behaviour of the moments of the 
temperature structure function of higher (even and odd) order. The extra complications 
do not seem warranted at  present in view of the reasonable success of the linear ramp 
model in predicting the main features of the anisotropy of the large-scale temperature 
structure. 

Using the computed values of a, the contributions ((AOT)2) and ((AOT)4) of the 
turbulent fluctuations to the second- and fourth-order temperature structure functions 
are indicatedin figures l(u) and 2(a). The contribution ((AOT)2) ( = + ((AO)S)/a) 

t Determined from the area under the temperature antocorrelation curve. 

FIGURE 12. Height and length of ramps for laboratory and atmospheric data. Jet: 0, a/(Oa)t; 
0, (l+8)/Le. Laboratory boundary layer: x , a/(02>1; +, (I+s)/Le. Atmospheric boundary layer 
over land: A, a/(02)1; v, (1+8)/L@. 
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is very nearly equal to ((AO)Z), especially in the case of the atmospheric data, which 
suggests that the contribution from the ramp to ( (A6)z)  is almost negligible. The 
contribution from ( (A6T)4)  represents 60-70 yo of ((AO)*) over the inertial subrange 
of the atmospheric data. The rate of increase of ( (A0T)4)  with r in the inertial subrange 
is slightly slower than that for ((A6)4). This trend is encouraging as it suggests even 
closer agreement between the measurements and the predictions of the modified 
theory. It must be noted, however, that the measured fifth- and seventh-order moments 
of A0 increase a t  a somewhat faster rate than the linear rate indicated by (13). With 
regard to mixed velocity-temperature structure functions, Van Atta (1 976) showed 
that for the present model the correlation ( (Au)  (A8)Z) is unaffected by the ramps, 

viz. ((Au) fAe)') = ((AUT) (AeT)2), 

provided that Au is statistically independent of A@, and AOT. Examination of the 
present simultaneous records of u and 6 lends some support to the last assumption 
as there is no strong evidence of a ramp structure for u, even though good correlation 
exists between low frequency components of u and 6. 

5. Concluding remarks, 
The behaviour of the odd-order structure functions of the temperature measured 

in different flows is in basic disagreement with predictions of high Reynolds number 
local similarity theory. This disagreement appears to be a direct result of the observed 
anisotropic coherent large-scale features of shear-flow turbulence. A simple ramp 
model for the large-scale structure correctly predicts the sign of the odd-order structure 
functions and yields a good approximation to their variation with r. A closer prediction 
of the variation with r of the higher odd-order moments of A0 probably requires a less 
idealized model for the ramps. An exponential model for the ramps was used by 
Antonia & Atkinson (1976) to calculate the high-order moments of 6. However, the 
implementation of such a model for the atmospheric data does not, at present, appear 
to be straightforward. It would appear that a quantitative model which adequately 
explains the observed non-zero skewness of the temperature derivative is not yet 
within easy reach. 

The removal of the effects of the coherent structure using the present ramp model 
does not radically change the slope of even-order temperature structure functions. The 
analysis presented in Antonia & Van Atta (1975) is in much closer agreement with the 
measured slope than the original Kolmogorov theory. It is hoped that an improved 
ramp model may explain the discrepancy that at  present exists between the predictions 
of the analysis and the measured higher even-order moments of AO. 
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